Thursday, August 16, 2012

Minimum Cut Problem

Hello, working more on BRSPOJ problems (ACM/ICPC Regionals will be held next month) I found a different graph problem Link, the problems asks to find the minimum cut of a graph, my first and naive idea was just sort the edges and remove them by their lesser weights till disconnect some vertex from the graph. The idea was totally wrong, then I started to look for similar problems and solutions over the internet and figured out that it was a simple Minimum Cut problem, and some of their best solutions were the Stoer-Wagner algorithm which works in O(n^3):
Credits goes to Link




 
  #include <iostream>   
  #include <vector>   
  #include <algorithm>   
  #include <queue>   
  #include <stdio.h>   
  #include <stdlib.h>   
  #include <string.h>   
  using namespace std;   
  const int INF = 1000000000;   
  int test, n, m, a, b, c, ans, cont, graph[110][110];   
  int globalMinCut(int n) {   
   bool a[n];   
   int v[n];   
   int w[n];   
   for(int i = 0; i < n; i++) v[i] = i;   
   int best = INF;   
   while(n > 1) {   
    int maxj = 1;   
    a[v[0]] = true;   
    for(int i = 1; i < n; ++i) {   
     a[v[i]] = false;   
     w[i] = graph[v[0]][v[i]];   
     if(w[i] > w[maxj]) {   
      maxj = i;   
     }   
    }   
    int prev= 0 ,buf = n;   
    while(--buf) {   
     a[v[maxj]]=true;   
     if(buf == 1) {   
      best = min(best, w[maxj]);   
      for(int k = 0; k < n; k++) {   
       graph[v[k]][v[prev]]= (graph[v[prev]][v[k]] += graph[v[maxj]][v[k]]);   
      }   
      v[maxj] = v[--n];   
     }   
     prev = maxj;   
     maxj = -1;   
     for(int j = 1; j < n; ++j) {   
      if(!a[v[j]]) {   
       w[j] += graph[v[prev]][v[j]];   
       if(maxj < 0 || w[j] > w[maxj]) {   
        maxj=j;   
       }   
      }   
     }   
    }   
   }   
   return best;   
  }   
  int main(void) {   
   scanf("%d", &test);   
   for( ; test-- > 0; ) {   
    scanf("%d%d", &n, &m);   
    memset(graph, 0, sizeof(graph));   
    for(int i = 0; i < m; i++) {   
     scanf("%d%d%d", &a, &b, &c);   
     a -= 1;   
     b -= 1;   
     graph[a][b] = graph[b][a] = c;   
    }   
    printf("%d\n", globalMinCut(n));   
   }   
   return 0;   
  }   

No comments:

Post a Comment